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Stepwise growth of oliggphenylene oxide)s and cyclization
via the Ullmann coupling reaction by using QuJN-dimethyl-

0-4

1
glycine afforded cyclic oligqt-phenylene oxide)s;- (CsH4O)n—

1
the cyclic oligop-phenylene oxide)s;—(CegH4O),—, with suit
able ring size for the hostguest complexation. \gile
conducted cop-
per-catalyzed Ullmann coupling of 4-bromophenol and obtained
a mixture of the cyclic oligagphenylene oxide)s with = 5—-98
Recently, Ma has reported that the Ullmann coupling reaction
using CulN,N-dimethylglycine catalyst enabled coupling of phen-
ols with aryl iodides under mild conditiofdJlimann coupling
catalyzed by CxO in the presence of @80z and KsPO, (with
aryl iodide and bromides, respectively) atrdns-1,2-bis(2-
pyridylidenamino)cyclohexane has also been found by Tailléfer.
Herein, we report application of these new Ullmann coupling
reactions to selective synthesis of the cyclic olgpbenylene
oxide)s.

Scheme 1 shows two routes for synthesis of linear phenylene
oxide tetramer terminated with two OH groups4-OH.
Analogous penta(phenylene oxide), HEHZO(CsH40)3CsH4-

OH, was prepared by Tashiro by using a similar Ullmann
coupling reaction by using CuCl (8a.50 mol %) at 8C°C.11

A 2:1 coupling reaction of 4-methoxymethoxyphenol formed
by protection of a hydroxy group of dihydroquindAand 4,4-
dibromodiphenyl ether in the presence of GUN-dimethylg-
lycine resulted in formation of a linear tetrame®4-OMOM

in 63% yield. Removal of the methoxymethyl group with HCI
givesL-4-OH in 98% yield (Scheme 1, method A). Coupling
of 4-methoxyphenol and 4 dliiododiphenyl ether, synthesized

(n = 6—10). The structure of the new cyclophanes was deter- by the reaction of diphenyl ether witN-iodosuccinimide?

mined by X-ray crystallography, which revealed that they have
planar or slightly bent structures with diameters of-11(b nm.

forms L-4-OMe in 86% yield. Subsequent demethylation by
BBr; yields L-4-OH in 90% yield (Scheme 1, method B).

An equimolar reaction ok-4-OH with 4,4 -diiododiphenyl
ether in the presence of the Cu reagent afforded the cyclic hexa-

Various cyclophanes composed of the aromatic groups attachedner,C-6 (eq 1). Table 1 summarizes the results of the cycliza-

to OH or OR groups have been investigdtpdrtly because the
electron-rich aromatic rings are able to form a complex with
electron-deficient guest molecules such gg Bttractive inter-
action between hydroquinones anghGorming a 3:1 complex,
was observed in the solid stt€ully aromatic crown ethers are
also expected to exhibit attractive interaction with electron-defi-
cient molecules and to form a hegjuest complex, although their
synthetic examples are rare and the yield is very id@uite
recently, Gibb reported templated synthesis of cyclic ohgo(
phenylene oxide)$>

Although examples of cyclic oligp¢phenylene sulfide)s are
known§7 there have been few reports on efficient synthesis of
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tion. The reaction of 4,4diiododiphenyl ether witt.-4-OH in
dioxane for 168 h did not form the cyclic product (run 1),
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SCHEME 1. Synthesis of L-4-OH

Method A
MOMOOH Cs,CO; (2 €q.) o o
Cul (10 mol%)
Me,NCH,COOH (30 mol%) o 0 HCI o) (0}

+
Dioxane CHCly, i-PrOH
90°C reflux
BrOOOBr 72h OMOM OMOM o OH OH
63% °

L-4-OMOM L-4-OH

Method B
MeO—@—OH 0
Cs,CO; (2 €eq.)
Cul (10 mol%) o o

N Me,NCH,COOH (30 mol%) BBr,
DMF [ j ( ] CHxCl [ j ( ]
100 °C r.t.

|Oo—@| 14 h OMe OMe 2h OH OH
7%
L2

86%
L-4-OMe L-4-OH

TABLE 1. Synthesis of Cyclic Oligop-phenylene oxide)s

reactarft reaction
run HO-Ar-OH I-Ar'-l catalyst solvent HO-Ar-OH (mM) T(°C) time (h) product
1 L-4-OH L-2-1 A dioxane 50 90 168 no reaction
2 L-4-OH L-2-1 A DMF 25 100 22 C-6 a7)
3 L-4-OH L-2-1 A DMF 5 100 44 C-6 (8.1)
4 L-4-OH L-2-1 A DMSO 25 100 20 C-6 (11)
5 L-4-OH L-2-1 B DMF 25 110 64 C-6 (11)
6d L-4-OH L-2-1 A C2H.Cly 30 100 148 no reaction
7d L-4-OH L-2-1 A DMF 25 100 36 no reaction
8¢ L-4-OH L-2-1 A DMF 25 100 36 C-6 (8.9)
9 L-6-OH L-1-1 A DMF 5 100 20 C-7 (29)
10 L-6-OH L-2-1 A DMF 5 100 20 C-8 (20)
11 L-6-OH L-3-1 A DMF 5 100 18 C-9 27)
12 L-6-OH L-4-1 A DMF 5 100 16 C-10 (21)

aHO-Ar-OH (1.0 mmol) and I-A*l (1.0 mmol) were used as the reactafit¥ields are in parentheseSA: Cul (0.2 mmol), MeNCH,COOH-HCI (0.6
mmol), CsCO; (4.0 mmol). B: CyO (0.05 mmol)trans-1,2-bis(2-pyridylidenamino)cyclohexane (0.2 mmol), £€; (4.0 mmol), MS3A (60 mg)d MesNBr
was added® EuNI was added.

probably due to low solubility of-4-OH in dioxane. Thereac-  C-10in the respective yields of 20, 27, and 21% after simple
tion with L-4-OH at 100°C, 22 h, in a DMF solution (25 mM) evaporation of DMF and extraction with CHQkuns 16-12).
proceeds more smoothly to give a mixture of the cyclic and  The NMR and MS spectra at-6—C10 are consistent with
linear oligofp-phenylene oxide)s. After removal of DMF by  ihe cyclic structure (Scheme 2). For example, theNMR
evaporation, extraction from the residue with Chkl@fforded spectrum ofC-9 shows one singlet signal at6.96, which is
analytically pureC-6 in 17% vyield (run 2). The reaction with assigned to the phenylene hydrogens. TR&{H} NMR

low concentration ot.-4-OH (5 mM) and that in DMSO also  ¢hactrym ofc-9 shows signals at 119.8 and 153.1 due to CH
producedC-6 in 8.1% (runs 3 and 4). Analogous cyclization o4 qyaternary carbons, respectively. The FAB-MS spectrum
by condensation using QDfrans-1,2-bis(2-pyridylidenamino)- of C-9 shows a signal at ,828.2348, which is in agreement with

cyclohexane produced the cyclic oligomer in 11% yield (run the calculated molecular weight (828.2359)
5). Addition of quaternary ammonium salts, which may act as 9 ) '

potential templates for the cyclization, did not improve yield i '
of the desired product (runs—). CH,Cl,/hexane or CHGIhexane affords single crystals suitable

Cyclic oligo(p-phenylene oxide)s with larger ring sizes were for X-ray crystal structure analysis. ORTEP view®f6—C-9
also synthesized. Linear hexame6-OH was synthesized by IS shown in Figure 1. The crystals contain &H, or CHCL
the coupling of 4-hydroxy-‘4methoxymethoxydiphenyl ether with ~ molecules used in recrystallization. A Cl atom of the LCH
4,4-diiododiphenyl ether in the presence of GUM-dimethylgly- molecule exists at the center of the pore®#%, while two
cine in DMF followed by removal of the MOM group by treat- molecules are positioned outside of the macrocycle. A GHCI
ment with HCI. The reaction df-6-OH with 1,4-diiodobenzene ~ molecule is included within the bent macrocycle@{7. C-8
in the presence of the copper catalyst produced the cyclic hep-andC-9 contain a CHG molecule inside of the pore. Th&9
tamer, C-7, in 26% yield (run 9).-6-OH underwent cyclizative has an extra inside space, which is filled by a phenylene oxide
coupling withL-2-1, L-3-I, andL-4-I to afford C-8, C-9, and unit of anothelC-9 molecule. The neighboring phenylene planes

Recrystallization of the cyclic oligpéphenylene oxide)s from
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SCHEME 2. Synthesis of C-#C-10
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of C-6 are situated almost perpendicularly, while the neighboring
aromatic planes oE-7, C-8, andC-9 are twisted with smaller
angles.C-6 and C-8 have almost planar structure structures, (d)
whereasC-7 andC-9 have bent structures due to an eveald

effect. Thel3C{1H} NMR spectra ofC-6—C-9, however, show

a single signal, indicating that the phenylene planes rotate faster ,
than the NMR time scale in solution. The diameter€e6 and FIGURE 1. ORTEP views of cyclic oliggf-phenylene oxide)s (a)

C-9 are estimated as approximately 1.0 and 1.5 nm. C-6, (b) C-7, (c) C-8, and (d)C-9 at the 30% ellipsoidal level.
In summary, we succeeded in synthesizing cyclic hexa- to deca-Hydrogen atoms are omitted for clarity.

(p-phenylene oxide)s by Ullmann coupling using QyMN-di-

methylglycine. Structures of the cyclic hexa- to ngnabenyl- 4,4-Diiododiphenyl Ether. To a 100-mL round-bottomed flask

ene oxide)s were determined by X-ray crystallography, which re- Were added diphenyl ether (1.0 g, 5.9 mmébiodosuccinimide

: wh diam. (2.8 9, 12 mmol), acetonitrile (20 mL), and trifluoroacetic acid (1
\e/(te(jrls((j): hlaét Tsy:ﬁ\_/?rﬁggsélg §::gg%ﬁgg;fé:}uecgu;%zgt?hﬂgm drop), and the mixture was refluxed for 4 h. Chloroform was added,

. . . and the organic phase was washed with$@; aq (1 time) and
formed, will be used as modules in supramolecular chemistry. \ ¢, (2 times), which was dried over Mg&Trhe volatiles were

. . evaporated, and the residue was recrystallized from chloroform/
Experimental Section hexane to obtain 4'4liiododiphenyl ether as a white solid (2.2 g,
4-(Methoxymethoxy)phenol. To a 100-mL round-bottomed 5.2 mmol, 88% yield):'"H NMR (300 MHz, CDC}, 25°C) 6 7.63
flask containing hydroquinone (4.0 g, 26 mma)N-diisopropyl- (d, 2H,J = 9.0 Hz), and 6.76 (d, 2H) = 9.0 Hz). 4,4-Bis(4-
ethylamine (3.3 mL, 38 mmol), and acetonitrile (120 mL) was added iodophenoxy)benzen&{3-1) (90% yield) and 4,4bis(4-iodophe-
methoxymethyl chloride (2.3 g, 28 mmol) slowly at°C. The noxy)diphenyl etherl(-4-1) (90% yield) were prepared similarly.
mixture was stirred at room temperature for 8 h, ethyl acetate was L-3-1: *H NMR (300 MHz, CDC}, 25°C) 6 7.61 (d, 4H,J= 9.0
added, and the mixtrue was washed with water (3 times). The Hz), 6.99 (s, 4H), and 6.76 (d, 4H,= 9.0 Hz); 13C{1H} NMR
organic phase was dried over Mg§®@olatiles were evaporated, (75.5 MHz, CDC}, 25°C) 6 187.0, 157.7, 152.4 138.7 120.7, and
and the residue was chromatographed on silica gel (ethyl acetate/120.4.L-4-1: *H NMR (300 MHz, CDC}, 25°C) 6 7.60 (d, 4H,
hexane= 1:10) to obtain 4-(methoxymethoxy)phenol as a white J = 9.0 Hz), 6.99 (s, 8H), and 6.75 (d, 48l= 9.0 Hz).
solid (1.5 g, 9.9 mmol, 38% yield)*H NMR (300 MHz, CDC}, 4,4-Bis[4-(methoxymethoxy)phenoxy]diphenyl Ether.To a
25°C) 0 6.91 (d, 2H,J = 9.0 Hz), 6.73 (d, 2HJ) = 9.0 Hz), 5.10 100-mL round-bottomed flask were added 4-(methoxymethox)-
(s, 2H), 3.49 (s, 3H)'3C{*H} NMR (75.5 MHz, CDC}, 25°C) 6 phenol (0.65 g, 3 mmol), 4:4libromodiphenyl ether (0.33 g, 1
151.2, 150.3, 118.0, 116.1, 95.5, and 55.9. 4-Hydroxgrmeth- mmol), Cul (38 mg, 0.2 mmol)}\,N-dimethylglycine hydrochloride
oxymethoxy)diphenyl ether was prepared similarly from'4,4 (84 mg, 0.6 mmol), G£0O; (1.4 g, 4 mmol), and 1,4-dioxane (4
dihydroxydiphenyl ether (38% yield)*H NMR (300 MHz, CDC}, mL), and the mixture was stirred at 9C for 72 h. Ethyl acetate
25°C) 0 7.63 (d, 2H,J = 9.0 Hz), 6.76 (d, 2HJ) = 9.0 Hz), 5.10 was added, and the organic phase was washed three times with
(s, 2H), 3.49 (s, 3H)3C{*H} NMR (75.5 MHz, CDC}, 25°C) 6 water. After the phase was dried over MgS@®olatiles were
152.9, 152.7, 151.4, 120.9, 119.3, 117.7, 116.3, 95.2, and 56.0. evaporated, and the residue was chromatographed on silica gel
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(ethyl acetate/hexarre 1:10) to obtain 4,4bis[4-(methoxymethox- Cyclic Hexa(p-phenylene oxide)To a 100-mL round-bottomed
y)phenoxy]diphenyl ether as a white solid (0.9 g, 1.9 mmol, 63% flask were added 4'44-hydoxyphenoxy)diphenyl ether (101 mg,
yield): IH NMR (300 MHz, CDC}, 25°C) ¢ 7.03-6.92 (m, 16H), 0.25 mmol), 4,4diiododiphenyl ether (96 mg, 0.25 mmol), Cul (6
5.14 (s, 4H), 3.49 (s, 6H}*C{*H} NMR (75.5 MHz, CDCIS, 25 mg, 0.03 mmol)N,N-dimethylglycine hydrochloride (14 mg, 0.1
°C) o 153._7, 153.1, 152.2, 120.1,.120.0, 119.7, 117.8, 95.3, and mmol), CsCO; (0.33 g, 1.0 mmol), and DMF (10 mL), and the
56.2. 4,4-Bis(4-methoxyphenoxy)diphenyl ethér-4-OMe) (86% mixture was stirred at 106C for 22 h. Volatiles were evaporated,
yield), 4,4-bis[4{ 4-(methoxymethoxy)phenokphenoxy]diphenyl  ang the residue was extracted with chloroform, which was washed
ether (-6-OMOM) (82% yield), 1,4-diphenoxybenzene (94%  hree times with water and dried over Mgg$@nd volatiles were
y!elqll), ?n?_i{ng&ﬁheqﬂxm\hpgg&e&hﬁr (%OS/E’:Z'%';’) év)e(rseep;%p_ared evaporated to obtain cyclic hexaphenylene oxide) as a white solid
Similarly. L-4-Ule: Z ,25° ' (30 mg, 0.044 mmol, 17% yield). The single crystals of cyclic hexa-
6.92 (m, 12H), 6.87 (d, 4H) = 9.0 Hz), 3.80 (s, 6H);*C{*H} (p-phenylene oxide) were obtained by recrystallization from dichlo-

NMR (75.5 MHz, CDC}, 25 °C) ¢ 155.8, 153.9, 152.9, 150.9, .

) e romethane/hexane. The macrocycles provided HRMS data that are
ﬁﬂZSf,chlg.IS,zlslfé, 6171%2_2'19(115(%7624%'\;'05’\/'14 (? EHM)R:;(%%O(S consistent with the molecular formula. Elemental analys&s-of-
6H): ,13C{1H3}’ NMR (75'5 MHz CD,C§, 25’°é) 5 153.7 1533 C-10, however, led to the results showing that they contain the
153.1.152.8. 152.0. 120.1 119.9 119.9 1198 119.5. 117.7. 95.1 Solvent in a nonstoichiometric ratio and that the formula based on

and 56.1. 1,4-Diphenoxybenzengd NMR (300 MHz, CDC}, 25 the analytical results may disagree with the crystallographic results.

°C) 6 7.3-7.38 (m, 4H), 7.06-7.12 (m, 2H), and 6.987.02 (m, It indicates that the crystals undergo elimination of the solvent in
8H); 13C{H} NMR (75.5 MHz, CDC}, 25 °C) 6 155.8, 153.9, part during drying them under vacuum and that the analytical results
152.9, 150.9, 120.3, 119.8, 119.2, 114.9, and 55.7-BRighen- are for the metastable solid containing partially eliminated solvent.

oxydiphenyl ether:'H NMR (300 MHz, CDC}, 25°C) 6 7.36— Formulas ofC-7—C-10 containing CHC{ are calculated from C/H
7.30 (m, 4H), 7.1+7.06 (m, 2H), and 7.026.98 (m, 12H);  ratios only.C-6: *H NMR (300 MHz, CDC}, 25 °C) 6 6.85;
13C{1H} NMR (75.5 MHz, CDC}, 25°C) 6 157.8, 153.2, 152.5,  3C{*H} NMR (75.5 MHz, CDC}, 25°C) 6 154.0 and 120.0. Anal.
129.7, 123.0, 120.5, and 119.8. Calcd for GeH2406: C, 78.25; H, 4.38. Found: C, 78.07; H, 4.51.
4,4-Bis(4-hydroxyphenoxy)diphenyl Ether. A: From 4,4'-Bis- Other cyclic oligop-phenylene oxide)s were prepared similarly.
[4-(methoxymethoxy)phenoxy]diphenyl Ether. To a 100-mL C-7: H NMR (300 MHz, CDC}, 25 °C) 6 6.94;13C{H} NMR
round-bottomed flask were added 2-propanol (10 mL), dichlo- (755 MHz, CDC}, 25 °C) ¢ 153.3, and 120.0; HR MS (FAB)
romethane (10 mL), 4,4is[4-(methoxymethoxy)phenoxyldiphenyl * nyz caled for GaHo40; 644.1835, found 644.1832. Anal. Calcd for
ether (0.21 g, 0.44 mmol), and concd HCI (1 drop), and the mixture CasHodO7(CHCk)o1z: C, 76.77; H, 4.30; Cl, 1.94. Found: C, 76.46;
was refluxed for 3 h. Volatiles were evaporated, and the residue H 4.05 Cl. 1.02C-8 HNMR (300 MHz, CDC}, 25°C) 6 6.93;
was washed with water to obtain 4fis(4-hydroxyphenoxy)- 13’0{1H}, NMR (75.5 MHz, CDC}, 25 oc)é 153.0 and 120.0: HR
dip’hel_wyl ether as a white solid (0.17 g,_0.44 mmol, 98% vyield). MS (FAB+) miz c.alcd fo‘r QBHB;OB 736.2097,. found 736.é106.
4,4-Bis[4-(4-hydroxyphenoxy)phenoxyldiphenyl ether was pre- Anal. Calcd for GgH3.0s:(CHCL), 72 C, 63.52; H, 3.61. Found:

pared similarly (99% yield):'"H NMR (300 MHz, DMSOs, 25 C. 63.82: H, 3.61C-0: H NMR (300 MHz, CDC}, 25 °C) 6
°C) 0 9.34 (s, 2H), 7.0%6.96 (m, 12H), 6.90 (d, 4H] = 9.0 Hz), Ve R o ' )
6.86 (d, 4H,J = 9.0 Hz), and 6.75 (d, 4H] = 9.0 Hz); 13C{H} 6.953;13C{'H} NMR (75.5 MHz, CDC}, 25°C) ¢ 153.3 and 120.0;

NMR (75.5 MHZ, DMSOdG, 25 oc) (S 154-91 154.6, 153.8, 153.4 HR MS (FAB"’) rTVZCaICd fOI’ C%4H3609 8282359, found 8282348
152.7 149.4, 121.4 120.9, 120.8, 120.6 119.6, and 117.2. Anal. Calcd for GsHse0o(CHCh)oss C, 70.97; H, 4.00; Cl, 9.51.
B: From 4,4'-Bis(4-methoxyphenoxy)diphenyl Ether.To a ~ Found: C, 70.58; H, 3.72, Cl, 8.5C-10: 'H NMR (300 MHz,
100-mL round-bottomed flask containing 4pis(4-methoxyphen- ~ CDCI3, 25°C): 6 6.95.13C{*H} NMR (75.5 MHz, CDCI3, 25

oxy)diphenyl ether (1.1 g, 2.65 mmol) and chloroform (60 mL) °C): 0 153.1 and 119.8. HR MS (FAB) m/z calcd for GoHadO10
was added BBy (dichloromethane solution (1.0 M), 15.5 mL) 920.2622, found 920.2587. Anal. Calcd fogB40010'(CHCl3)o 3:
dropwise over a periodfd h at 0°C. The mixture was gradually ~ C, 75.70; H, 4.25. Found: C, 75.41; H, 4.66.

warmed to room temperature and stirred for 2 h. The volatiles were

evaporated, and the residue was washed with water to affotd 4,4 sypporting Information Available: Crystal structure determi-
bis(4-hydroxyphenoxy)diphenyl ether as a white 5°|'Od (0.959, 2.46 patjon, thermogravimetric analysis, and differential scanning cal-
mmol, 97% yield): 'H NMR (300 MHz, DMSO#s, 25°C) 6 9.39 orimetry of macrocycles and crystallographic data @6, C-7,

(S, 2H), 6.93 (d, 4H) = 9.0 Hz), 6.87 (d, 4H) = 9.0 Hz), 6.83 C-8, andC-9 (CIF). This material is available free of charge via
(d, 4H,J=19.0 Hz), and 6.73 (d, 4H] = 9.0 Hz); "*C{'H} NMR the Internet at http:/pubs.acs.org.

(75.5 MHz, DMSO¢d, 25°C) 6 154.8, 154.6, 153.0, 149.5, 121.3,
120.6, 119.6, and 117.1. JO0609982
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